
INTRODUCTION TO NETS

TOMMASO RUSSO

1. Sequences do not describe the topology

The goal of this �rst part is to justify via some examples the fact that
sequences are not su�cient to describe a topological space. In order to do
so, we start discussing metric spaces in which sequences are indeed su�cient
in the following sense: if two metrics d1 and d2 on the same set X result
in the same convergent sequences to the same limits, then they also induce
the same topology; thus, knowing the behavior of sequences implies the
knowledge of the topology. In reality it is not even necessary to ask the two

limits to coincide, since it can be deduced: i.e. xn
d1→ x and xn

d2→ x̃ implies
x = x̃. This is because the sequence1 x1, x, x2, x, x3, x, · · · converges in d1
to x, so it must converge also in d2. However its subsequence x1, x2, x3, · · ·
converges in d2 to x̃, while x, x, x, · · · converges in d2 to x, hence x = x̃.
Now the argument can easily proceed in at least two ways:

• By our assumption the identity id : (X, d1) −→ (X, d2) is sequentially
bicontinuous, so is bicontinuous (since in metric spaces continuity
equals sequential continuity), hence the two topologies are equal.
• We prove that the two topologies have the same closed sets. S ⊆ X
is d1-closed i� it contains all d1-limits of all sequences in S; however
they are exactly all d2-limits of all sequences in S, so S is d2-closed.
Brie�y, d1-closed i� d1-sequentially closed i� d2-sequentially closed
i� d2-closed.

So we get that in metric spaces sequences are enough and the reason for this
are the equivalences: continuous ⇐⇒ sequentially continuous and closed
⇐⇒ sequentially closed. Now we look at topological spaces and we see that
in general nothing of this still holds.
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you will �nd many mistakes of various sorts. I would really appreciate any suggestion of
improvement or correction of errors. Thank you!

1this is not really a way to write sequences, but you understand what I mean.
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Example 1.1. (`1, w).
It's well known that this is a Shur space, i.e. a sequence {xn}∞n=1 in

`1 converges weakly i� it converges in norm. So we see that two di�erent
topologies (the one induced by the norm and the weak one) result in the
same convergent sequences, in particular w-convergence is not su�cient to
describe the w-topology. Further

id : (`1, w) −→ (`1, ‖.‖)
is sequentially continuous but not continuous, since the weak topology is
strictly weaker than the norm one.
We also have di�erences for closed sets: S`1 is strongly sequentially closed,

so weakly sequentially closed, but S`1
w
= B`1 (this equality holds in every

in�nite dimensional Banach space). Thus we have

S`1
seq−w

= S`1 $ B`1 = S`1
w
.

Our next example is even more elementary in that requires no Functional
Analysis; however is somewhat arti�cial.

Example 1.2. ([0, 1], τ) [Megginson] Ex. 2.3.
Consider the following topology on the unit interval

τ := {A ⊆ [0, 1] : 0 /∈ A or card ([0, 1] \ A) ≤ ℵ0} .
Clearly this is an Hausdor� topology and {0} /∈ τ , so that (0, 1] is not closed.
However (0, 1] is sequentially closed, since no sequence in (0, 1] can converge
to 0. Indeed let {xn}+∞n=1 ⊆ (0, 1] and note that U := [0, 1] \ {xn}+∞n=1 ∈ τ is
a neighborhood of 0 disjoint from the given sequence.

Remark 1.1. Maybe it can be interesting to note that the reason why this
example works is that there are too many neighborhoods of 0 and they are
all too big: they are so many that can elude a given sequence, but all are
too big to elude the whole (0, 1]. This is mathematically expressed by the
fact that 0 does not admit a countable local basis, as it is immediate to see.
Actually one can show that missing a countable local basis is just what

can go wrong, since in �rst countable spaces2 continuity equals sequential
continuity and closedness sequential closedness (proofs are very similar to
those for metric spaces). Hence sequences are su�cient not only in metric
spaces, but also in �rst countable ones.
This generalization is nevertheless not much interesting in Functional

Analysis since one can show that for linear topologies metrizability is equiv-
alent to �rst countability (see [Rudin] 1.24), so for linear topologies this is
actually not a more general case.

2i.e. every point admits a countable local basis.
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These two examples show that the equivalences previously stated fail in
topological spaces; still, one can be not much satis�ed with the �rst one
since Shur spaces are quite pathological examples and one can suspect that
in �honest� spaces sequences should do their work. This is tragically false:

Exercise 1.1. [Rudin] Chp. 3 Ex. 9 (this example is due to Von Neumann).
Consider `2 with the usual complete orthonormal system {en}+∞n=0, let

fa,b := ea + aeb, a, b ∈ N and E := {fa,b : 0 ≤ a < b}.
(1) �nd all elements of E

seq−w
;

(2) �nd all elements of E
w
;

(3) show that 0 ∈ Ew
, 0 /∈ Eseq−w

, but 0 ∈
(
E
seq−w

)seq−w
.

This is a very main example since it shows that even in the most easy to
handle space (separable Hilbert space) sequences are not su�cient and even
more:

E
seq−w $

(
E
seq−w

)seq−w
.

This says that the sequential closure of a set might be not sequentially closed
(probably it was already clear, but recall that the sequential closure of E is
the set of all limits of sequences in E). This implies that

E 7−→ E
seq−w

is not a closure operator, i.e. it doesn't correspond to the closure in any
topology. More explicitly, there exists in general no topology whose closed
sets are exactly the sequentially closed ones!
This shows once for all that sequences are not powerful enough and mo-

tivates the need to look for some more general concept.

2. Nets

Here we introduce this generalization of the concept of sequences and we
prove the most basic properties.
There is a very simple idea which is important to underline: we want

points of the closure of a set to be limit of these nets. In order to get
this we want to generalize the proof given for metric spaces, with balls of
radius 1/n, and the one for �rst countable spaces, using a countable family of
neighborhoods; in these, to any of this neighborhoods one associates a point
in the set in such a way that the resulting sequence converges, so at the end
of the story what one does is using the countable local basis as index for
the sequence in a clever way so that when the neighborhoods shrink to the
point the sequence converges to the point itself.
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With sequences this is latent, while nets are exactly the mathematical
way to make this straight, as will be apparent from the �rst proof on.

De�nition 2.1. Let I 6= ∅ be a set. A preorder on I is a relation ≤ that
satis�es:

(1) re�exivity: α ≤ α for each α ∈ I;
(2) transitivity: α ≤ β, β ≤ γ ⇒ α ≤ γ for each α, β, γ ∈ I.

De�nition 2.2. A directed set is a nonempty set I with a preorder ≤ such
that for every α, β ∈ I these exists γ ∈ I with α ≤ γ and β ≤ γ.

De�nition 2.3. A net in X (X is just a set here) is a mapping from I to
X. Usually it is denoted

I −→ X

α 7−→ x(α) ≡ xα

or brie�y (xα)α∈I or even (xα) without mention to the directed set when it
causes no confusion.

Example 2.1. N and R are clearly directed sets with the usual orders.
Then any ϕ : N −→ X is a net, so every sequence is a net. Also, every
ϕ : R −→ X is a net. In particular nets may have no �rst element and the
index family may be more than countable, but may also be �nite.

We now need convergence of nets and in order to do so we need a topology
on X. So from now with X we will denote a topological space (X, τ) and
Ux will denote the family of all neighborhoods of x. Let us also recall the
de�nition of subbasis for a topology: a family S of subsets of X is a subbasis
for τ if the collection of all �nite intersections of elements in S produces a
basis for the topology.

De�nition 2.4. Let (xα) be a net in X and let x ∈ X. Then we say that

(xα) converges to x, written xα
α→ x if for every U ∈ Ux there is α0 ∈ I

such that for all α ≥ α0 one has xα ∈ U . Obviously here α ≥ α0 means by
de�nition α0 ≤ α.

Remark 2.1. If (xα) is a sequence, as in Example 2.1, then this de�nition is
just the de�nition of convergence of sequences.

Now we turn to some basic result; the �rst one in particular says that we
do not really need to check the previous condition on all neighborhoods.

Proposition 2.1. (subbasis and convergence).

(1) xα
α→ x i� the condition of the de�nition holds for each U in a

subbasis of neighborhoods of x.
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(2) A net in a topological product converges i� all its coordinates con-
verge; i.e. the product topology is the topology of coordinatewise con-
vergence.

Proof. (1) =⇒ is clear since we have to test the condition on less neighbor-
hoods.
⇐= Let U ∈ Ux, so that there exist U1, · · · , UN ∈ Ux elements of the given

subbasis with U1 ∩ · · · ∩ UN ⊆ U (U contains an element of the basis and
this is �nite intersection of elements from the subbasis). On each Ui we use
the condition of De�nition 2.4: for i = 1, · · · , N there exists αi0 ∈ I such
that for all α ≥ αi0 one has xα ∈ Ui. Now we use the de�nition of a directed
set and induction: there exists α0 ∈ I with αi0 ≤ α0 for all i = 1, · · · , N , so
by transitivity for every α ≥ α0 one has xα ∈ ∩Ni=1Ui ⊆ U . This proves that
for U the condition of De�nition 2.4 holds.
(2) Let X(β) be topological spaces and let X :=

∏
β∈BX

(β) endowed with

the product topology3; recall that the product topology is de�ned giving a
subbasis, which is the following:

S :=

{∏
β∈B

U (β) : U (β) is open in X(β) and at most one is strictly contained in X(β)

}
or, which is the same

S :=


U (β0) ×

∏
β ∈ B
β 6= β0

X(β) : β0 ∈ B and U (β0) is open in X(β0)


.

But clearly, given a net (xα) ∈ X we have that

xα ∈ U (β0) ×
∏

β ∈ B
β 6= β0

X(β)

i� x
(β0)
α ∈ U (β0); thus testing convergence on all elements of S is exactly

testing coordinatewise convergence. However S is a subbasis, so by 1. the
convergence of (xα) in X is coordinatewise convergence. �

Theorem 2.1. (nets describe the topology).

3here the indexes of the topological product are superscripts, while indexes of nets are
subscripts. There is no deep reason for that, it's just to distinguish.
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(1) X is an Hausdor� space ⇐⇒ every net admits at most one limit;
(2) f : X −→ Y is continuous ⇐⇒ is net-continuous;
(3) S ⊆ X is closed ⇐⇒ is net-closed.

We didn't give the de�nitions of net-continuity and of net-closedness, but
they are exactly what one expects. f : X −→ Y is net-continuous if it sends
convergent nets into convergent nets (xα

α→ x =⇒ f(xα)
α→ f(x)) , S is

net-closed i� it contains all limits of nets in S.
In the statement of the theorem it's quite clear that the three =⇒ implica-

tions are not unexpected: it's part of our intuition that continuous functions
should preserve convergence. So the three implications =⇒ of the theorem
show us that this generalization of sequences is reasonable. But the three
⇐= implications are much more unexpected and much more interesting: in-
deed we can use just the same argument we gave at beginning using now (2)
or (3) to deduce that two topologies that induce the same convergent nets
to the same limits must be the same. This is the �rst very main advantage
of nets with respect to sequences, so right-to-left implications say that nets
are a very interesting generalization.

Proof. (1)=⇒ If by contradiction (xα) is a net such that xα → x and xα → y,
with x 6= y, then there exist U ∈ Ux, V ∈ Uy disjoint, so by de�nition of
convergence there are α0, β0 ∈ I such that for each α ∈ I with α ≥ α0 we
have xα ∈ U and for each α ∈ I with α ≥ β0 we have xα ∈ V . Let γ ∈ I be
such that α0 ≤ γ, β0 ≤ γ, so that for α ≥ γ we have xα ∈ U ∩ V = ∅; this is
a contradiction.
⇐= Assume X is not Hausdor�, so there are x 6= y in X such that all

neighborhoods of x intersect all neighborhoods of y. We want to prove that
there exists a net with at least two limits. We build it in this way. Consider
as a set Ux × Uy and the following order relation on it:

(Ux, Uy) � (Vx, Vy)⇐⇒ [Ux ⊇ Vx ∧ Uy ⊇ Vy]

(note that the inclusion is reversed). Since intersection of two neighborhoods
is a neighborhood, this is a directed set. But for each (Ux, Uy) ∈ Ux × Uy
we have Ux ∩ Uy 6= ∅, so we can choose (here we need to use the Axiom of
Choice) x(Ux,Uy) ∈ Ux ∩ Uy for each (Ux, Uy) ∈ Ux ×Uy. In this way we have
found a net: (

x(Ux,Uy)

)
(Ux,Uy)∈Ux×Uy

.

Now we just need to check that this net converges to both x and y. We prove
it for x since for y is obviously the same argument. Fixed U ∈ Ux we use as
the α0 of the de�nition of convergence the element (U,X) ∈ Ux × Uy and it
is obvious that for each (Ux, Uy) ∈ Ux × Uy with (Ux, Uy) � (U,X) we have
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x(Ux,Uy) ∈ Ux ∩ Uy ⊆ U ∩X = U ; thus we have that for every neighborhood
of x there exists an index such that the net lies in that neighborhood for all
indexes bigger than the given one, which is the de�nition of convergence.
(2) =⇒ Let xα

α→ x, we want to prove that f(xα)
α→ f(x). Since f is

continuous, for any U ∈ Uf(x), we have that f−1(U) ∈ Ux; hence there is
α0 ∈ I such that for each α ≥ α0 we have xα ∈ f−1(U), so that f(xα) ∈ U .
⇐= If f is not continuous, then there exists U open in Y such that f−1(U)

is not open in X, so there exists x0 ∈ f−1(U) which is not an interior
point, while f(x0) ∈ U is interior. By de�nition this means that every

neighborhood of x0 intersects (f−1(U))
{
, so given V ∈ Ux0 there is xV ∈

V ∩ (f−1(U))
{
. As before, Ux0 with the reversed inclusion is a directed set,

so (xV ) is a net which converges to x0 (exactly the same argument of (1));

however f(xV ) /∈ U so that f(xV )
α9 f(x) and f is not net-continuous.

(3) =⇒ Let x0 ∈ X and (xα) ⊆ S be such that xα
α→ x0, we want to prove

that x0 ∈ S. But every neighborhood of x0 contains elements of (xα), so
intersects S, hence for each U ∈ Ux0 one has U ∩S 6= ∅. This means exactly
that x0 ∈ S = S since S is closed.
⇐= Let x0 ∈ S, we show that x0 ∈ S by proving that there exists a net

in S which converges to x0. This is now a very familiar argument: for each
U ∈ Ux0 there is xU ∈ U ∩ S and, looking at Ux0 with the reverse inclusion,
this (xU) is a net in S that converges to x0. �

Remark 2.2. The proof of all left-to-right implications has really nothing
new, the right-to-left implications are based on a very important idea: neigh-
borhoods with reversed inclusion are a directed set and after this remark the
proof becomes just an easy veri�cation. This idea is exactly the one we un-
derlined at the beginning of the section and after this proof it should be
clear why nets are a very natural generalization of sequences.

3. Subnets and Compactness

It would have been very nice to �nd in Theorem 2.1 a statement giving a
characterization of compactness in terms of nets, for example something like
�X is compact i� is net-compact�. However it's clear that there is at least
one step missing. Indeed �net-compactness� should generalize sequential
compactness, so it should require some concept of a �sub-net� of a net, which
we did not introduce. We now try a �rst de�nition, which may seem quite
natural but is in reality far from what we need. In analogy with sequences
one could try to de�ne a subnet of a net (xα) as the restriction of the net
to a suitable subset J of I, which should contain elements of I with �large�
indexes. For example we can say:
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De�nition 3.1. A subset J of a directed set I is said to be co�nal if for
each α ∈ I there is β ∈ J with α ≤ β.

Then one could de�ne a subnet of the net (xα) to be the restriction of the
net to a co�nal subset of I. Note that with this de�nition any subnet of a
sequence is indeed a subsequence of the given sequence and this could seem
to be a very good aspect of our de�nition. In reality this is a problem: if we
want compactness to be equivalent to net-compactness, then in particular
every sequence in a compact topological space must admit a convergent
subnet, so a convergent subsequence. However it's known that this is false
(see Remark 3.5); thus we have to accept that sequences may admit subnets
that are not subsequences.

In reality the de�nition of subsequence itself is not to restrict the sequence
to a subset, but is a pre-composition with a strictly increasing ϕ : N −→ N.
Here we do not have a concept of strictly increasing functions (we only have
preorders), but note that if ϕ : N −→ N is strictly increasing, then it is
increasing and ϕ(N) is co�nal in N; these two properties can be used for a
de�nition in every directed set. With this the de�nition of subnet is almost
ready, we just need to avoid the mistake of using the same directed set (for
the same reason of before) and we get:

De�nition 3.2. Let ϕ : I −→ X be a net and let J be a directed set. If
ψ : J −→ I is a mapping such that:

(1) β1 ≤ β2 in J implies ψ(β1) ≤ ψ(β2) in I,
(2) ψ(J) is co�nal in I,

then we say that ϕ ◦ ψ : J −→ X is a subnet of ϕ.
If the net ϕ is denoted (xα)α∈I ≡ (xα) then ϕ ◦ ψ is denoted (xψ(β))β∈J ≡

(xψ(β)), sometimes even (xβ) if no confusion can arise.

First of all we need an example to convince us that with this de�nition
sequences may admit subnets that are not subsequences.

Example 3.1. Let (xn) be a sequence and let ψ : [1,+∞) −→ N de�ned by
r 7−→ ψ(r) := brc. It's clear that this ψ satis�es the two conditions (for (2)
simply note that ψ is onto), so (xψ(r))r∈[1,+∞) is a subnet of (xn). Obviously
this is not a sequence, in particular passing to a subnet may increase the set
of indexes.

Remark 3.1. If a sequence converges to a limit, then all its subsequences
converge to the same limit. Luckily, the same holds for nets. Indeed if
xα → x and (xψ(β)) is a subnet, then for every U ∈ Ux there exists α0 ∈ I
such that for each α ≥ α0 one has xα ∈ U . By co�nality, there exists β0 ∈ J
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such that ψ(β0) ≥ α0, so for β ≥ β0 one has ψ(β) ≥ ψ(β0) ≥ α0 which gives
xψ(β) ∈ U .

Remark 3.2. One could give a slightly more general de�nition of subnet, for
example see [Kelley] where ψ is required to satisfy, instead of (1) and (2),
this condition: for each α0 ∈ I there is β0 ∈ J such that for every β ≥ β0
one has ψ(β) ≥ α0.
For what we need here, there is no real di�erence, just some small modi-

�cations in proofs.

For the proof of the equivalence between compactness and net-compactness
it is useful to introduce the concept of accumulation point, which as usual
generalizes the corresponding de�nition for sequences.

De�nition 3.3. A net (xα) accumulates at a point x0 or x0 is an accumu-
lation point for (xα) if for every U ∈ Ux0 and every α0 ∈ I there is α ∈ I
with α ≥ α0 such that xα ∈ U .

Remark 3.3. It's clear that if a net converges to a point, then it accumulates
at that point. Moreover we have that if a subnet accumulates at a point, then
all the net accumulates at the point. Let us prove this second statement:
assume (xψ(β)) accumulates at x and �x U ∈ Ux and α0 ∈ I. By co�nality
there is β0 ∈ J with ψ(β0) ≥ α0 and since (xψ(β)) accumulates at x we
also have that there exists β ∈ J, β ≥ β0 with xψ(β) ∈ U . By monotonicity
α := ψ(β) ≥ α0 is the index we need.
Putting together these two facts we get that if a subnet converges to a

point, then the net accumulates at the point and the �rst serious result on
accumulation points is that the converse holds here. But before proving it,
let's note that surprisingly this is false with sequences!4

Example 3.2. (`1, w) again.
Consider a sequence dense in the unit sphere S`1 with respect to the norm

topology. Of course no subsequence can converge weakly to 0 (it is Shur),
but this sequence accumulates at 0. Indeed any weak neighborhood U of 0
intersects the unit sphere and U ∩ S`1 is open in the restriction of the norm
topology to the sphere. By density the sequence must intersect this open
set in�nitely many times.
Note that also Exercise 1.1 provides a counterexample to this.

Theorem 3.1. (subnets and accumulation).
A net accumulates at a point i� some subnet converges to that point.

4Once again, this equivalence is true in metric spaces but not in topological ones.
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Proof. ⇐= Is part of Remark 3.3.
=⇒ Is very similar to the previous proofs, we just need a slightly more

careful choice of the directed set. Let (xα) be a net that accumulates at x0
and let

J := {(α, U) ∈ I × Ux0 : xα ∈ U}
with the preorder given by (α1, U1) � (α2, U2) ⇐⇒ α1 ≤ α2 and U1 ⊇
U2. Since (xα) accumulates at x0, this is a directed set: indeed given
(α1, U1), (α2, U2) there exists γ ∈ I with α1 ≤ γ, α2 ≤ γ, so there ex-
ists α3 ∈ I, α3 ≥ γ such that xα3 ∈ U1 ∩ U2. Hence (α3, U1 ∩ U2) ∈
J and (αi, Ui) � (α3, U1 ∩ U2), i = 1, 2. Then the mapping ψ : J −→ I
given by ψ(α, U) := α de�nes a subnet (xψ(α,U)) which converges to x0 (in-
deed for every U0 ∈ Ux0 there exists α0 ∈ I such that xα0 ∈ U0, so for
(α, U) � (α0, U0) we have xψ(α,U) ∈ U0). �

We are �nally ready for the result we were looking for.

Theorem 3.2. (compactness).
X is compact i� every net in X admits a convergent subnet (i.e. X is

net-compact) i� every net in X accumulates at some point of X.

Since compactness is an intrinsic property, this immediately implies that
S ⊆ X is compact i� every net in S admits a subnet converging in S (i.e. S
is net-compact) i� every net in S accumulates at some point of S.

Proof. The equivalence between the second and the third statement follows
obviously from Theorem 3.1. We now prove the equivalence between the
�rst and the third.

=⇒ By contradiction, let (xα) be a net in X with no accumulation point
in X. Then �xed x ∈ X, (xα) doesn't accumulate on x, so there are Ux ∈ Ux
and αx ∈ I such that xα /∈ Ux for all α ≥ αx.
Now {Ux}x∈X is an open cover of a compact set, so there are �nitely many

points x1, · · · , xN such that X = ∪Ni=1Uxi . Let β ≥ αxi , i = 1, · · · , N so that
xβ /∈ Uxi , i = 1, · · · , N and then xβ /∈ ∪Ni=1Uxi = X.
⇐= By contraposition: if X is not compact, then there exists an open

cover O with no �nite subcover. Then the family

G := {G ⊆ X : G is �nite union of elements of O}
is a directed set with the inclusion (not reversed!) and by assumption each
element of G is strictly contained in X; hence we can choose5 xG ∈ X \ G.
Then (xG)G∈G is a net and it has no accumulation point in X. Indeed if

5here and in all previous arguments the Axiom of Choice is needed.
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x ∈ X there exists G ∈ G such that x ∈ G, so for every H ≥ G we have that
xH /∈ H; thus xH /∈ G gives that (xG)G∈G does not accumulate at x. �

Remark 3.4. In all these proofs the point is always the same: we use neigh-
borhoods as a directed set, from the assumptions we deduce information
about some neighborhoods, we translate them looking neighborhoods as in-
dexes and this gives properties of the net. After this remark all proofs reduce
just to the veri�cation of some small detail.

Remark 3.5. Theorem 3.2 is a very important characterization of compact-
ness which generalizes the well known result for metric spaces. Its impor-
tance is also due to the fact that the sequential characterization fails to hold
in topological spaces, since both implications are false. For example, by the
Banach-Alaoglu Theorem B`∗∞ is w∗-compact , but is easy to see that it is
not w∗-sequentially compact. For a counterexample to the other implication
consider the following very beautiful example.

Example 3.3. [Manetti] Exercise 7.14.

Consider the topological product [0, 1]R, i.e. the set of all functions f :
R −→ [0, 1] with the pointwise convergence topology. Let

B :=
{
f ∈ [0, 1]R : card {f 6= 0} ≤ ℵ0

}
.

Then we have that:

(1) B is dense in [0, 1]R;
(2) B is not compact;
(3) B is sequentially compact.

Indeed for 1, let f ∈ [0, 1]R and let U ∈ Uf . Assume without loss of generality
that U is an element of the basis for the product topology, so that

U = U(x1, · · · , xn, ε; f) :=
{
g ∈ [0, 1]R : |g(xi)− f(xi)| < ε, ∀i = 1, · · · , n

}
.

We want to show that this neighborhood intersects B and this is obvious:

indeed consider f̃ ∈ [0, 1]R de�ned by

f̃(x) =

{
f(x) x ∈ {xi}ni=1

0 otherwise
.

Obviously f̃ ∈ B and moreover f̃ ∈ U since
∣∣∣f̃(xi)− f(xi)∣∣∣ = |f(xi)− f(xi)| =

0 < ε, so that B is dense. Since of course B $ [0, 1]R, B is not closed, hence

not compact (here we use that the product topology in [0, 1]R is Hausdor�).
Let us now prove that B is sequentially compact. If {fn} is a sequence in

B, we denote Fn := {fn 6= 0} and F := ∪+∞n=1Fn which is at most countable.
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Hence we have that for each x /∈ F {fn(x)} is of course convergent since
all terms are 0. Since F is countable a straight application of the Cantor
Diagonal principle produces a subsequence {fnk

} that converges in every
point of F . So the subsequence {fnk

} converges pointwise to a certain f and
of course {f 6= 0} ⊆ F so that f ∈ B.

We conclude this section with some applications of the previous results to
some elementary facts; clearly they can be proved also with no use of nets.

Example 3.4. In a topological vector space the closure of a convex set is a
convex set.
If the space is actually a normed space this is trivial, since x, y ∈ C with

C convex implies that there are xn, yn ⊆ C such that xn → x, yn → y, so
λxn + (1− λ)yn ∈ C converges to λx+ (1− λ)y which therefore lies in C.
But now one tries to do the same with nets and almost everything works,

there is just a small detail: x, y ∈ C implies that ∃(xα)α∈I , xα
α→ x and

∃(yβ)β∈J , yβ
β→ y but in general I 6= J !

However one could build a couple of nets with the same directed set as
domain and that converge to the same points. Indeed consider: I × J with
the preorder (α1, β1) � (α2, β2) i� α1 ≤ α2 and β1 ≤ β2

6, the two mappings
ψ1 : I × J −→ I, ψ1(α, β) := α and ψ2 : I × J −→ J, ψ2(α, β) := β and
the couple of nets (xψ1(α,β))I×J and (xψ2(α,β))I×J are the ones we need. Then
everything in the previous argument can be done the same way.

Example 3.5. The topological product of two compact sets is compact.
The standard proof of this fact is not completely trivial, there is some work

to do, while with nets this is immediate: if (xα, yα)α∈I is a net in X × Y ,
then (xα) is a net in the compact X, so there exists a convergent subnet:

there is ψ : J −→ I with xψ(β)
β→ x. But now (yψ(β))β∈J is a net in Y , so

there is ξ : H −→ J with yψ(ξ(γ))
γ→ y. Then the subnet (xψ(ξ(γ)), yψ(ξ(γ)))γ∈H

converges to (x, y).

4. Ultranets

Of course Example 3.5 makes us think at Tychono� Theorem about arbi-
trary topological product of compact topological spaces and makes us wonder
whether one could �nd an easy proof of the theorem by using net techniques.
However it's well known that Tychono� Theorem is equivalent to the Axiom
of Choice (this was proved by Kelley), hence we can not hope to �nd too
easy proofs, since any proof must use somewhere the Axiom of Choice or

6Here maybe it would be better to write α1 ≤I α2 and β1 ≤J β2.
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something equivalent. Actually nets allow us to prove this result by means
of the so called ultranets which are particularly useful in arguments that
involve compactness and the Axiom of Choice. The aim of this section is to
introduce them and use them to prove Tychono� Theorem.
We begin with two de�nitions which we could have used from the begin-

ning in order to de�ne convergence and accumulation; we didn't do so since
their use would have made no di�erence up to now, while from now on they
will be quite useful.

De�nition 4.1. A net (xα) frequents the set S (⊆ X) or is in S frequently
if

∀α ∈ I, ∃ β ∈ I with α ≤ β such that xβ ∈ S.
De�nition 4.2. A net (xα) is in S ultimately (one could use also eventually)
if

∃α ∈ I, ∀β ∈ I with α ≤ β such that xβ ∈ S.
With these concepts it's clear that the de�nitions of convergence and

accumulation can be rephrased as follows:

• a net converges to a point i� is ultimately in all his neighborhoods;
• a net accumulates at a point i� is frequently in all his neighborhoods.

Moreover it's clear form the de�nitions that:

• (xα) is in S ultimately i� is not in S{ frequently;
• if a net is ultimately in a set, then it is frequently in that set.

Now the de�nition of ultranet is very natural since there is just to ask that
the converse of the last statement holds.

De�nition 4.3. An ultranet is a net that is ultimately in each set that
frequents, i.e. a net for which the following implication holds:

(xα) frequents S =⇒ (xα) is in S ultimately.

If in particular S is chosen to be a neighborhood of a point x, we have
that if an ultranet is frequently in a neighborhood, then it is ultimately in
that neighborhood. Hence we get:

Lemma 4.1. If an ultranet accumulates at a point, then it converges to that
point.

Let now (xα) be an ultranet and let S ⊆ X. If (xα) is not ultimately in
S, then it must be frequently in S{ and being an ultranet, this implies that
(xα) is ultimately in S{. Hence if (xα) is an ultranet and S ⊆ X, then (xα)
is ultimately in S or in S{. Actually also the converse holds: indeed if (xα)
satis�es this condition and it is frequently is a set S, then is not ultimately
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in S{ and by assumption this implies that is ultimately in S; hence (xα) is
an ultranet.
We have thus proved the following quite useful characterization of ultra-

nets, which is sometimes used as a de�nition.

Proposition 4.1. A net (xα) is an ultranet i� the following holds: for every
S ⊆ X the net is ultimately in S or in S{. This is clearly also equivalent to:
for every S ⊆ X the net doesn't frequent both S and S{.

Last basic fact we need is that ultranets are preserved by functions (no
continuity assumption!).

Remark 4.1. If (xα) is an ultranet in X and f : X −→ Y , then (fxα) is an
ultranet in Y .
Indeed if (fxα) frequents S ⊆ Y , then (xα) frequents f−1(S). By as-

sumption this gives that (xα) is ultimately in f−1(S), so (fxα) is ultimately
in S.

Remark 4.2. All the concepts introduced so far have been presented as gener-
alizations of sequential concepts, but the one of ultranet. So is quite natural
to ask whether there exists some sequential analogue of this concept. Let's
try to understand which sequences are ultranets. If the range of the se-
quence is in�nite, then we can split it into two disjoint countable sets and
the sequence would frequent them both, so is not an ultranet. If the range
is �nite and at least two values are attained in�nitely often, then these two
values are frequented and again the sequence is not an ultranet. So only
eventually constant sequences can be ultranets and clearly they are. Hence
a sequence is an ultranet i� is eventually constant.
This remark can be interesting since it provides us the �rst example of an

ultranet; however this is quite a trivial example and the fact that ultranet
is a trivial concept for sequences makes us understand that this concept is
actually interesting just for nets.
In reality we still need to show that this concept is interesting for nets and

this is what we now turn to do, by showing that there are enough ultranets:
every net admits a subnet which is an ultranet. Unluckily the proof of this
fact is highly non constructive, since the directed set of the subnet is obtained
by making use of Zorn Lemma. This is done in the following Lemma.

Lemma 4.2. Let (xα) be a net in X. Then there exists M ⊆ 2X , i.e. a
family of subsets of X such that:

(1) (xα) frequents every element of M;
(2) M is closed under intersection of two elements: M1,M2 ∈ M =⇒

M1 ∩M2 ∈M;
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(3) for each S ⊆ X either S or S{ are in M.

Proof. We begin �nding a good candidate.
Consider the collection of all families of subsets that satisfy (1) and (2),

i.e.
F :=

{
N ⊆ 2X : N satis�es (1) and (2)

}
and note that it is non empty since {X} ∈ F . Partially order F by inclusion
and note that every chain admits an upper bound (simply take the union
and show that is in F ), so Zorn Lemma gives us a maximal element M ∈ F
. This is our candidate.
We now need to show that M satis�es (3). To do so, �x S ⊆ X.

Claim 4.1. (xα) frequents all elements of {S ∩M :M ∈M} or all elements
of
{
S{ ∩M :M ∈M

}
.

Indeed, by contradiction assume that (xα) doesn't frequent neither S∩M1

nor S{ ∩M2 for some M1,M2 ∈ M. All the more the net doesn't frequent

neither S ∩ M1 ∩ M2 nor S{ ∩ M2 ∩ M1, so neither their union which is
M1 ∩M2; this contradicts (2).

The proof is now almost concluded. WLOG assume (xα) frequents all
elements of {S ∩M :M ∈M} =: M1 so that M1 satis�es condition (1) and
trivially also condition (2); hence M1 ∈ F and then also M ∪M1 ∈ F ,
so that by maximality M = M ∪M1 and then M1 ⊆ M. In particular
for every M ∈ M, M ∩ S ∈ M, but X ∈ M (otherwise {X} ∪M ∈ F
would be greater) gives S ∈ M. Of course if in the claim we have that
(xα) frequents all elements of

{
S{ ∩M :M ∈M

}
the same argument gives

S{ ∈ M. Hence ∀S ⊆ X either S ∈ M or S{ ∈ M, which gives (3) and
concludes the argument. �

Theorem 4.1. (Existence of ultranets).
Every net admits a subnet that is an ultranet.

Proof. Let (xα)α∈I be a net in X, let M given by Lemma 4.2 and consider
the set

J := {(α,M) ∈ I ×M : xα ∈M}
with the preorder (α1,M1) � (α2,M2) i� α1 ≤ α2 and M1 ⊇ M2 and the
mapping ψ : J −→ I given by ψ(α,M) := α.

Claim 4.2. J is a directed set and ψ de�nes a subnet.
Indeed, given (α1,M1), (α2,M2) ∈ J there is α3 ∈ I with α3 ≥ α1 and α3 ≥

α2 and by properties (1) and (2) ofM we have that there is α4 ≥ α3 with xα4 ∈
M1 ∩M2. This gives (α4,M1 ∩M2) ∈ J and (α4,M1 ∩M2) � (αi,Mi), i =
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1, 2; hence J is a directed set. ψ is clearly monotonic and onto (for each
α ∈ I, (α,X) ∈ J), so de�nes a subnet.

Claim 4.3. (xψ(α,M)) is an ultranet.
Indeed �xed M0 ∈ M there is α0 such that xα0 ∈ M0, so for (α,M) ∈ J

with (α,M) � (α0,M0) we have xψ(α,M) = xα ∈ M ⊆ M0; hence (xψ(α,M))
is in M0 ultimately. Now we use (3) to conclude: for each S ⊆ X either S
or S{ are in M, so the subnet is ultimately in one of them.

�

Now that we have ultranets we use them to give this characterization of
compactness.

Theorem 4.2. (Ultranets and compactness).
X is compact i� every ultranet in X converges in X.

Proof. =⇒ Since X is compact, by Theorem 3.2 every net must accumu-
late somewhere, so also every ultranet. But for them accumulation implies
convergence.
⇐= Pick any net in X and by Theorem 4.1 extract a subnet which is an

ultranet. This converges somewhere, so the net admits a convergent subnet
and X is compact. �

Finally we can now deduce as a trivial corollary:

Corollary 4.1. (Tychono� Theorem).
Any topological product of compact topological spaces is compact.

Proof. Let (xα) be a ultranet in the topological product, so that (πxα) is
an ultranet in one of the factors, hence converges since factors are com-
pact. Thus the ultranet (xα) converges coordinatewise, so converges in the
topological product. �

We conclude answering another question which may rise: does Tychono�
Theorem hold for sequential compactness? I.e. is the topological product of
sequentially compact topological spaces sequentially compact?
The answer is obviously yes in case of �nite terms and using again the

Cantor Diagonal Argument one easily gets that the answer is yes also for
countably many factors.
If factors are more than countably many, then in general is false. We can

prove this in at least two ways:

• by Banach-Alaoglu Theorem. If the product of sequentially com-
pact spaces is sequentially compact, then [−1, 1]BX is sequentially

compact. Hence so is the closed subspace BX∗ ⊆ [−1, 1]BX in the
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restriction of the product topology, which is the w∗ topology. Hence
BX∗ is sequentially w

∗ compact, but we already mentioned that this
is false. So brie�y, sequential Tychono� Theorem implies sequential
Banach Alaoglu Theorem, which does not hold.
• with an explicit example. Consider {−1, 1}R i.e. functions from R
to {−1, 1} with the pointwise convergence topology. We want to
�nd {fn} sequence of functions such that no subsequence converges

pointwise. Since # {−1, 1}N = c, we can put in bijection the set of all
sequences of {−1, 1} with R and we use this as sequence of functions:
∀α ∈ R, fn(α) is the n-th term of the sequence corresponding to α.
It's clear that no subsequence can converge at all points, since given
any subsequence nk there exists of course a sequence {δn} with values
in {−1, 1} such that {δnk

} oscillates and in the point corresponding
to this sequence {fnk

} can not converge.

5. Tychonoff Theorem and the Axiom of Choice

The goal of this section is the proof of the aforementioned equivalence
between the Axiom of Choice and the Tychono� Theorem. Let us begin
with the following simple equivalence.

Lemma 5.1. The Axiom of Choice is equivalent to the fact that every sur-
jective g : Y → X (for every pair of sets X and Y ) admits a right-inverse
(that is: f : X → Y with g ◦ f = idX).

Proof. Assume the existence of a right-inverse for every surjective map and
let X = ∪i∈IXi be a union of non-empty sets, indexed by a set I. De�ne
the set Y := {(x, i) ∈ X × I : x ∈ Xi} and notice that from the assumption
Xi 6= ∅ for every i ∈ I it follows that the canonical projection q : Y → I
is onto. Hence, our assumption yields a right-inverse h : I → Y , that is
h(i) = (xi, i) with xi ∈ Xi. If p : Y → X denotes the canonical projection,
then p ◦ h is the required choice function.
Conversely, let g : Y → I be onto; then for every i ∈ I the set Xi :=

g−1(i) is non-empty and X = ∪i∈IXi. Hence the Axiom of Choice gives an
f : i→ X such that f(i) ∈ Xi, that is g(f(i)) = i for every i ∈ I. �

Theorem 5.1. (Kelley).
The Tychono� Theorem implies the Axiom of Choice.

Proof. Let X, Y be sets and let g : Y → X be onto; we shall �nd a right-
inverse for g. Notice that, �xed a �nite subset A of X, the set

F (A) := {f : X → Y : g(f(x)) = x ∀x ∈ A} ⊆ Y X
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is non-empty and this assertion does not require the Axiom of Choice. In-
deed, �xed x1 ∈ A, g−1(x1) ⊆ Y is not empty, so we can choose an element
f(x1) ∈ g−1(x1). With �nitely many choices we can build f ∈ F (A).
Now observe that the family of all F (A), as A ranges in the family F of

all �nite subsets of X, has the �nite intersection property; thus, if we could
�nd a topology on Y X in which all F (A) are closed and Y X is compact, then
∩A∈FF (A) would be non-empty and every element in ∩A∈FF (A) would be a
right-inverse to g, thus concluding the proof. But since F (A) = ∩x∈AF ({x})
it su�ces to have that all the F ({x}) = {f : X → Y : f(x) ∈ g−1(x)} are
closed.
Consider the indiscrete topology τX on X and let τY := g−1(τX). Ob-

viously, g : (Y, τY ) → (X, τX) is continuous and (Y, τY ) is compact (since
(X, τX) is); hence by the Tychono� Theorem Y X , endowed with the prod-
uct topology, is compact. Finally we have that g−1(x0) is closed in Y for
every x0 ∈ X, hence {f : X → Y : f(x0) ∈ g−1(x0)} is closed in the product
topology. �
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